Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Mol Diagn ; 26(3): 202-212, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171482

ABSTRACT

Prenatal molecular genetic testing for familial variants that cause inherited disorders has been performed for decades and is accepted as standard of care. However, the spectrum of genes considered for prenatal testing is expanding because of genetic testing for hereditary cancer risk (HCR) and inclusion of conditions with associated cancer risk in carrier screening panels. A few of these disorders, such as ataxia telangiectasia and Bloom syndrome, include increased cancer risk as part of the phenotype, already meet professional guidelines for prenatal testing, and may be associated with increased cancer risk in heterozygous carriers. In addition, recent studies implicate heterozygosity for variants in lysosomal storage disease genes in HCR etiology. Currently, there is no specific professional guidance regarding prenatal testing for HCR. To determine the prevalence of such testing, we reviewed 1345 consecutive prenatal specimens received in our laboratory for familial variant-specific testing and identified 65 (4.8%) with a known or likely HCR component, plus 210 (15.6%) for lysosomal storage disease. These specimens were classified into five distinct categories for clarity and to enable evaluation. Our experience assessing prenatal specimens for variants associated with HCR, with or without a constitutional phenotype, provides metrics for and contributes to the points to consider in prenatal testing for HCR.


Subject(s)
Lysosomal Storage Diseases , Neoplasms , Female , Humans , Pregnancy , Genetic Predisposition to Disease , Genetic Testing , Neoplasms/diagnosis , Neoplasms/genetics , Phenotype
2.
Genet Med ; 25(2): 100317, 2023 02.
Article in English | MEDLINE | ID: mdl-36459106

ABSTRACT

PURPOSE: Expanded pan-ethnic carrier screening is an effective tool for the management of reproductive risk. However, growth in the number of conditions screened, in combination with increasingly more comprehensive test methodologies, can lead to the detection of genetic findings that may affect the health of the tested individual. The objective of this study was to investigate the frequency of pathogenic genotypes in a presumed healthy carrier screening cohort to facilitate broader discussions regarding disclosure of genetic information from carrier screening. METHODS: A retrospective analysis of 73,755 targeted carrier screens was performed to identify individuals with pathogenic genotypes and heterozygous risk alleles. RESULTS: In this study, we identified 79 individuals (0.11%) with pathogenic genotypes associated with moderate to profound autosomal recessive or X-linked conditions. In addition, 10 cases had chromosome X dosage abnormalities suggestive of a sex chromosome abnormality. Heterozygote risk alleles represented the majority of ancillary findings in this cohort, including 280 female carriers of FMR1 premutation alleles, 15 heterozygous females with pathogenic DMD variants, and 174 heterozygotes with pathogenic variants in genes that may confer increased risk for somatic malignancies in the heterozygous state. CONCLUSION: These data suggest that nearly 1% of individuals undergoing carrier screening will have a finding that may require clinical evaluation or surveillance.


Subject(s)
Fragile X Mental Retardation Protein , Genetic Testing , Humans , Female , Heterozygote , Genetic Testing/methods , Alleles , Retrospective Studies , Genetic Carrier Screening/methods , Fragile X Mental Retardation Protein/genetics
3.
Am J Med ; 131(2): 200.e1-200.e8, 2018 02.
Article in English | MEDLINE | ID: mdl-28943383

ABSTRACT

BACKGROUND: Fabry disease is an X-linked lysosomal storage disorder caused by the deficient activity of α-galactosidase A due to mutations in the GLA gene, which may be associated with increased left ventricular wall thickness and mimic the morphologic features of hypertrophic cardiomyopathy. Management strategies for these 2 diseases diverge, with Fabry disease-specific treatment utilizing recombinant α-galactosidase A enzyme replacement therapy. METHODS: We studied a prospectively assembled consecutive cohort of 585 patients (71% male) from 2 hypertrophic cardiomyopathy tertiary referral centers by screening for low α-galactosidase A activity in dried blood spots. Male patients with low α-galactosidase A activity levels and all females were tested for mutations in the GLA gene. RESULTS: In 585 patients previously diagnosed with hypertrophic cardiomyopathy, we identified 2 unrelated patients (0.34%), both with the GLA mutation encoding P.N215S, the most common mutation causing later-onset Fabry disease phenotype. These patients were both asymptomatic, a man aged 53 years and a woman aged 69 years, and demonstrated a mild cardiac phenotype with symmetric distribution of left ventricular hypertrophy. After family screening, a total of 27 new Fabry disease patients aged 2-81 years were identified in the 2 families, including 12 individuals who are now receiving enzyme replacement therapy. CONCLUSIONS: These observations support consideration for routine prospective screening for Fabry disease in all patients without a definitive etiology for left ventriclar hypertrophy. This strategy would likely result, through cascade family testing, in the earlier identification of new Fabry disease-affected males and female heterozygotes who may benefit from monitoring and/or enzyme replacement therapy.


Subject(s)
Cardiomyopathy, Hypertrophic/etiology , Fabry Disease/diagnosis , Tertiary Healthcare , Adolescent , Adult , Aged , Aged, 80 and over , Cardiomyopathy, Hypertrophic/diagnosis , Child , Child, Preschool , Diagnosis, Differential , Enzyme Replacement Therapy , Fabry Disease/complications , Fabry Disease/drug therapy , Fabry Disease/genetics , Female , Genetic Testing , Humans , Male , Middle Aged , Mutation , Pedigree , Young Adult , alpha-Galactosidase/blood , alpha-Galactosidase/genetics , alpha-Galactosidase/therapeutic use
4.
J Proteome Res ; 16(10): 3787-3804, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28792770

ABSTRACT

Clinical trials have been conducted for the neuronal ceroid lipofuscinoses (NCLs), a group of neurodegenerative lysosomal diseases that primarily affect children. Whereas clinical rating systems will evaluate long-term efficacy, biomarkers to measure short-term response to treatment would be extremely valuable. To identify candidate biomarkers, we analyzed autopsy brain and matching CSF samples from controls and three genetically distinct NCLs due to deficiencies in palmitoyl protein thioesterase 1 (CLN1 disease), tripeptidyl peptidase 1 (CLN2 disease), and CLN3 protein (CLN3 disease). Proteomic and biochemical methods were used to analyze lysosomal proteins, and, in general, we find that changes in protein expression compared with control were most similar between CLN2 disease and CLN3 disease. This is consistent with previous observations of biochemical similarities between these diseases. We also conducted unbiased proteomic analyses of CSF and brain using isobaric labeling/quantitative mass spectrometry. Significant alterations in protein expression were identified in each NCL, including reduced STXBP1 in CLN1 disease brain. Given the confounding variable of post-mortem changes, additional validation is required, but this study provides a useful starting set of candidate NCL biomarkers for further evaluation.


Subject(s)
Brain/metabolism , Munc18 Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Proteomics , Aminopeptidases/deficiency , Aminopeptidases/genetics , Autopsy , Biomarkers/cerebrospinal fluid , Biomarkers/chemistry , Biomarkers/metabolism , Brain/pathology , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Humans , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Membrane Proteins/deficiency , Membrane Proteins/genetics , Molecular Chaperones/genetics , Munc18 Proteins/deficiency , Mutation , Neuronal Ceroid-Lipofuscinoses/cerebrospinal fluid , Neuronal Ceroid-Lipofuscinoses/metabolism , Neuronal Ceroid-Lipofuscinoses/pathology , Serine Proteases/deficiency , Serine Proteases/genetics , Thiolester Hydrolases/deficiency , Thiolester Hydrolases/genetics , Tripeptidyl-Peptidase 1
5.
J Lipid Res ; 58(6): 1230-1237, 2017 06.
Article in English | MEDLINE | ID: mdl-28373485

ABSTRACT

Acyl-CoA:diacylglycerol acyltransferase (DGAT)1 and DGAT2 catalyze triglyceride (TG) biosynthesis in humans. Biallelic loss-of-function mutations in human DGAT1 result in severe congenital diarrhea and protein-losing enteropathy. Additionally, pharmacologic inhibition of DGAT1 led to dose-related diarrhea in human clinical trials. Here we identify a previously unknown DGAT1 mutation in identical twins of South Asian descent. These male patients developed watery diarrhea shortly after birth, with protein-losing enteropathy and failure to thrive. Exome sequencing revealed a homozygous recessive mutation in DGAT1, c.314T>C, p.L105P. We show here that the p.L105P DGAT1 enzyme produced from the mutant allele is less abundant, resulting in partial loss of TG synthesis activity and decreased formation of lipid droplets in patient-derived primary dermal fibroblasts. Thus, in contrast with complete loss-of-function alleles of DGAT1, the p.L105P missense allele partially reduces TG synthesis activity and causes a less severe clinical phenotype. Our findings add to the growing recognition of DGAT1 deficiency as a cause of congenital diarrhea with protein-losing enteropathy and indicate that DGAT1 mutations result in a spectrum of diseases.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Diarrhea/congenital , Diarrhea/genetics , Mutation, Missense , Alleles , Cell Line, Tumor , Child, Preschool , Diarrhea/enzymology , Female , Homozygote , Humans , Loss of Function Mutation , Male , Pregnancy
6.
Mol Genet Metab ; 119(1-2): 160-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27553878

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) are a heterogeneous group of lysosomal storage disorders. NCLs include the rare autosomal recessive neurodegenerative disorder neuronal ceroid lipofuscinosis type 2 (CLN2) disease, caused by mutations in the tripeptidyl peptidase 1 (TPP1)/CLN2 gene and the resulting TPP1 enzyme deficiency. CLN2 disease most commonly presents with seizures and/or ataxia in the late-infantile period (ages 2-4), often in combination with a history of language delay, followed by progressive childhood dementia, motor and visual deterioration, and early death. Atypical phenotypes are characterized by later onset and, in some instances, longer life expectancies. Early diagnosis is important to optimize clinical care and improve outcomes; however, currently, delays in diagnosis are common due to low disease awareness, nonspecific clinical presentation, and limited access to diagnostic testing in some regions. In May 2015, international experts met to recommend best laboratory practices for early diagnosis of CLN2 disease. When clinical signs suggest an NCL, TPP1 enzyme activity should be among the first tests performed (together with the palmitoyl-protein thioesterase enzyme activity assay to rule out CLN1 disease). However, reaching an initial suspicion of an NCL or CLN2 disease can be challenging; thus, use of an epilepsy gene panel for investigation of unexplained seizures in the late-infantile/childhood ages is encouraged. To confirm clinical suspicion of CLN2 disease, the recommended gold standard for laboratory diagnosis is demonstration of deficient TPP1 enzyme activity (in leukocytes, fibroblasts, or dried blood spots) and the identification of causative mutations in each allele of the TPP1/CLN2 gene. When it is not possible to perform both analyses, either demonstration of a) deficient TPP1 enzyme activity in leukocytes or fibroblasts, or b) detection of two pathogenic mutations in trans is diagnostic for CLN2 disease.


Subject(s)
Aminopeptidases/blood , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/blood , Early Diagnosis , Neuronal Ceroid-Lipofuscinoses/blood , Serine Proteases/blood , Aminopeptidases/genetics , Brain/physiopathology , Child, Preschool , Dementia/complications , Dementia/physiopathology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dried Blood Spot Testing , Enzyme Replacement Therapy , Female , Humans , Language Development Disorders/complications , Language Development Disorders/physiopathology , Leukocytes/enzymology , Male , Mutation , Neuronal Ceroid-Lipofuscinoses/complications , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/physiopathology , Phenotype , Serine Proteases/genetics , Tripeptidyl-Peptidase 1
7.
Mol Genet Genomic Med ; 3(5): 404-12, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26436106

ABSTRACT

The LRRK2 G2019S mutation is found at higher frequency among Parkinson disease (PD) patients of Ashkenazi Jewish (AJ) ancestry. This study was designed to test whether an internet-based approach could be an effective approach to screen and identify mutation carriers. Individuals with and without PD of AJ ancestry were recruited and consented through an internet-based study website. An algorithm was applied to a series of screening questions to identify individuals at increased risk to carry the LRRK2 G2019S mutation. About 1000 individuals completed the initial screening. Around 741 qualified for mutation testing and 650 were tested. Seventy-two individuals carried at least one LRRK2 G2019S mutation; 38 with PD (12.5%) and 34 without (10.1%). Among the AJ PD participants, each affected first-degree relative increased the likelihood the individual was LRRK2+ [OR = 4.7; 95% confidence interval = (2.4-9.0)]. The same was not observed among the unaffected AJ subjects (P = 0.11). An internet-based approach successfully screened large numbers of individuals to identify those with risk factors increasing the likelihood that they carried a LRRK2 G2019S mutation. A similar approach could be implemented in other disorders to identify individuals for clinical trials, biomarker analyses and other types of research studies.

8.
Curr Protoc Hum Genet ; 87: 9.26.1-9.26.23, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26439718

ABSTRACT

Huntington disease (HD) is caused by expansion of a CAG trinucleotide repeat in the first exon of the Huntingtin (HTT) gene. Molecular testing of Huntington disease for diagnostic confirmation and disease prediction requires detection of the CAG repeat expansion. There are three main types of HD genetic testing: (1) diagnostic testing to confirm or rule out disease, (2) presymptomatic testing to determine whether an at-risk individual inherited the expanded allele, and (3) prenatal testing to determine whether the fetus has inherited the expanded allele. This unit includes protocols that describe the complementary use of polymerase chain reactions (PCR) and Southern blot hybridization to accurately measure the CAG trinucleotide repeat size and interpret the test results. In addition, an indirect linkage analysis that does not reveal the unwanted parental HD status in a prenatal testing will also be discussed.


Subject(s)
Huntington Disease/diagnosis , Huntington Disease/genetics , Molecular Diagnostic Techniques , Alleles , Blotting, Southern/methods , Electrophoresis, Capillary/methods , Humans , Huntingtin Protein , Nerve Tissue Proteins/genetics , Polymerase Chain Reaction/methods , Trinucleotide Repeat Expansion , Trinucleotide Repeats
10.
PLoS One ; 10(5): e0127045, 2015.
Article in English | MEDLINE | ID: mdl-25996915

ABSTRACT

Mutations in ATP1A3 cause Alternating Hemiplegia of Childhood (AHC) by disrupting function of the neuronal Na+/K+ ATPase. Published studies to date indicate 2 recurrent mutations, D801N and E815K, and a more severe phenotype in the E815K cohort. We performed mutation analysis and retrospective genotype-phenotype correlations in all eligible patients with AHC enrolled in the US AHC Foundation registry from 1997-2012. Clinical data were abstracted from standardized caregivers' questionnaires and medical records and confirmed by expert clinicians. We identified ATP1A3 mutations by Sanger and whole genome sequencing, and compared phenotypes within and between 4 groups of subjects, those with D801N, E815K, other ATP1A3 or no ATP1A3 mutations. We identified heterozygous ATP1A3 mutations in 154 of 187 (82%) AHC patients. Of 34 unique mutations, 31 (91%) are missense, and 16 (47%) had not been previously reported. Concordant with prior studies, more than 2/3 of all mutations are clusteredin exons 17 and 18. Of 143 simplex occurrences, 58 had D801N (40%), 38 had E815K(26%) and 11 had G947R (8%) mutations [corrected].Patients with an E815K mutation demonstrate an earlier age of onset, more severe motor impairment and a higher prevalence of status epilepticus. This study further expands the number and spectrum of ATP1A3 mutations associated with AHC and confirms a more deleterious effect of the E815K mutation on selected neurologic outcomes. However, the complexity of the disorder and the extensive phenotypic variability among subgroups merits caution and emphasizes the need for further studies.


Subject(s)
Hemiplegia/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , Genetic Association Studies , Hemiplegia/physiopathology , Humans , Infant , Male , Registries
11.
Biochim Biophys Acta ; 1852(10 Pt B): 2301-11, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25976102

ABSTRACT

BACKGROUND: The Argentinean program was initiated more than a decade ago as the first experience of systematic translational research focused on NCL in Latin America. The aim was to overcome misdiagnoses and underdiagnoses in the region. SUBJECTS: 216 NCL suspected individuals from 8 different countries and their direct family members. METHODS: Clinical assessment, enzyme testing, electron microscopy, and DNA screening. RESULTS AND DISCUSSION: 1) The study confirmed NCL disease in 122 subjects. Phenotypic studies comprised epileptic seizures and movement disorders, ophthalmology, neurophysiology, image analysis, rating scales, enzyme testing, and electron microscopy, carried out under a consensus algorithm; 2) DNA screening and validation of mutations in genes PPT1 (CLN1), TPP1 (CLN2), CLN3, CLN5, CLN6, MFSD8 (CLN7), and CLN8: characterization of variant types, novel/known mutations and polymorphisms; 3) Progress of the epidemiological picture in Latin America; and 4) NCL-like pathology studies in progress. The Translational Research Program was highly efficient in addressing the misdiagnosis/underdiagnosis in the NCL disorders. The study of "orphan diseases" in a public administrated hospital should be adopted by the health systems, as it positively impacts upon the family's quality of life, the collection of epidemiological data, and triggers research advances. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".

12.
Science ; 347(6229): 1436-41, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25700176

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Autophagy/genetics , Exome/genetics , Genetic Predisposition to Disease , Protein Serine-Threonine Kinases/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cell Cycle Proteins , Female , Genes , Genetic Association Studies , Humans , Male , Membrane Transport Proteins , Middle Aged , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Risk , Sequence Analysis, DNA , Sequestosome-1 Protein , Transcription Factor TFIIIA/genetics , Transcription Factor TFIIIA/metabolism , Young Adult
13.
World J Gastroenterol ; 21(3): 1001-8, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25624737

ABSTRACT

Lysosomal acid lipase (LAL) deficiency is an under-recognized lysosomal disease caused by deficient enzymatic activity of LAL. In this report we describe two affected female Mexican siblings with early hepatic complications. At two months of age, the first sibling presented with alternating episodes of diarrhea and constipation, and later with hepatomegaly, elevated transaminases, high levels of total and low-density lipoprotein cholesterol, and low levels of high-density lipoprotein. Portal hypertension and grade 2 esophageal varices were detected at four years of age. The second sibling presented with hepatomegaly, elevated transaminases and mildly elevated low-density lipoprotein and low high-density lipoprotein at six months of age. LAL activity was deficient in both patients. Sequencing of LIPA revealed two previously unreported heterozygous mutations in exon 4: c.253C>A and c.294C>G. These cases highlight the clinical continuum between the so-called Wolman disease and cholesteryl ester storage disease, and underscore that LAL deficiency represents a single disease with a degree of clinical heterogeneity.


Subject(s)
Mutation , Siblings , Sterol Esterase/deficiency , Sterol Esterase/genetics , Wolman Disease/genetics , Biopsy , Child , Child, Preschool , DNA Mutational Analysis , Disease Progression , Esophageal and Gastric Varices/enzymology , Esophageal and Gastric Varices/genetics , Esophagoscopy , Exons , Fatty Liver/enzymology , Fatty Liver/genetics , Female , Genetic Predisposition to Disease , Hepatomegaly/enzymology , Hepatomegaly/genetics , Heterozygote , Humans , Hypertension, Portal/enzymology , Hypertension, Portal/genetics , Immunohistochemistry , Infant , Liver Cirrhosis/enzymology , Liver Cirrhosis/genetics , Mexico , Pedigree , Phenotype , Siblings/ethnology , Time Factors , Ultrasonography, Doppler, Color , Wolman Disease/complications , Wolman Disease/diagnosis , Wolman Disease/enzymology , Wolman Disease/ethnology , Wolman Disease
14.
Angiogenesis ; 16(2): 387-404, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23143660

ABSTRACT

Altered RNA processing is an underlying mechanism of amyotrophic lateral sclerosis (ALS). Missense mutations in a number of genes involved in RNA function and metabolisms are associated with ALS. Among these genes is angiogenin (ANG), the fifth member of the vertebrate-specific, secreted ribonuclease superfamily. ANG is an angiogenic ribonuclease, and both its angiogenic and ribonucleolytic activities are important for motor neuron health. Ribonuclease 4 (RNASE4), the fourth member of this superfamily, shares the same promoters with ANG and is co-expressed with ANG. However, the biological role of RNASE4 is unknown. To determine whether RNASE4 is involved in ALS pathogenesis, we sequenced the coding region of RNASE4 in ALS and control subjects and characterized the angiogenic, neurogenic, and neuroprotective activities of RNASE4 protein. We identified an allelic association of SNP rs3748338 with ALS and demonstrated that RNASE4 protein is able to induce angiogenesis in in vitro, ex vivo, and in vivo assays. RNASE4 also induces neural differentiation of P19 mouse embryonal carcinoma cells and mouse embryonic stem cells. Moreover, RNASE4 not only stimulates the formation of neurofilaments from mouse embryonic cortical neurons, but also protects hypothermia-induced degeneration. Importantly, systemic treatment with RNASE4 protein slowed weight loss and enhanced neuromuscular function of SOD1 (G93A) mice.


Subject(s)
Neovascularization, Physiologic , Neurogenesis , Ribonucleases/metabolism , Animals , Base Sequence , Cell Line , DNA Primers , Humans , In Situ Hybridization , Mice , Polymerase Chain Reaction , Polymorphism, Genetic , Ribonucleases/genetics
15.
Gene ; 516(1): 114-21, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23266810

ABSTRACT

Tripeptidyl-peptidase 1 (TPP1) null or residual activity occurs in neuronal ceroid lipofuscinosis (NCL) with underlying TPP1/CLN2 mutations. A survey of 25 South American CLN2 affected individuals enabled the differentiation of two phenotypes: classical late-infantile and variant juvenile, each in approximately 50% of patients, with residual TPP1 activity occurring in approximately 32%. Each individual was assigned to one of three subgroups: (I) n=11, null TPP1 activity in leukocytes; (II) n=8, residual TPP1 activity of 0.60-15.85 nmol/h/mg (nr 110-476); (III) n=6, activity not measured in leukocytes. Curvilinear bodies (CB) appeared in almost all studied CLN2 subjects; the only exceptions occurred in cases of subgroup II: two individuals had combined CBs/fingerprints (FPs), and one case had pure FPs. There were 15 mutations (4 first published in this paper, 3 previously observed in South America by our group, and 8 previously observed by others). In subgroup I, mutations were either missense or nonsense; in subgroups II and III, mutations prevailed at the non-conserved intronic site, c.887-10A>G (intron 7), and to a lesser extent at c.89+5G>C (intron 2), in heterozygous combinations. Grouping phenotypically and genetically known individuals on the basis of TPP1 activity supported the concept that residual enzyme activity underlies a protracted disease course. The prevalence of intronic mutations at non-conserved sites in subgroup II individuals indicates that some alternative splicing might allow some residual TPP1 activity.


Subject(s)
Aminopeptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Neuronal Ceroid-Lipofuscinoses/enzymology , Neuronal Ceroid-Lipofuscinoses/genetics , Phenotype , Serine Proteases/genetics , Adolescent , Adult , Alleles , Alternative Splicing , Aminopeptidases/metabolism , Argentina , Child , Child, Preschool , Computational Biology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Female , Humans , Introns , Male , Microscopy, Electron, Transmission , Mutation , Neuronal Ceroid-Lipofuscinoses/pathology , Pedigree , Prospective Studies , Reproducibility of Results , Retrospective Studies , Serine Proteases/metabolism , South America , Tripeptidyl-Peptidase 1 , Young Adult
16.
Am J Hum Genet ; 91(1): 202-8, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22748208

ABSTRACT

Neuronal ceroid lipofuscinosis (NCL) is a genetically heterogeneous group of lysosomal diseases that collectively compose the most common Mendelian form of childhood-onset neurodegeneration. It is estimated that ∼8% of individuals diagnosed with NCL by conservative clinical and histopathologic criteria have been ruled out for mutations in the nine known NCL-associated genes, suggesting that additional genes remain unidentified. To further understand the genetic underpinnings of the NCLs, we performed whole-exome sequencing on DNA samples from a Mexican family affected by a molecularly undefined form of NCL characterized by infantile-onset progressive myoclonic epilepsy (PME), vision loss, cognitive and motor regression, premature death, and prominent NCL-type storage material. Using a recessive model to filter the identified variants, we found a single homozygous variant, c.550C>T in KCTD7, that causes a p.Arg184Cys missense change in potassium channel tetramerization domain-containing protein 7 (KCTD7) in the affected individuals. The mutation was predicted to be deleterious and was absent in over 6,000 controls. The identified variant altered the localization pattern of KCTD7 and abrogated interaction with cullin-3, a ubiquitin-ligase component and known KCTD7 interactor. Intriguingly, murine cerebellar cells derived from a juvenile NCL model (CLN3) showed enrichment of endogenous KCTD7. Whereas KCTD7 mutations have previously been linked to PME without lysosomal storage, this study clearly demonstrates that KCTD7 mutations also cause a rare, infantile-onset NCL subtype designated as CLN14.


Subject(s)
Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Potassium Channels/genetics , Animals , Child, Preschool , Female , HEK293 Cells , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Pedigree , Proteasome Endopeptidase Complex/genetics , Ubiquitin/genetics
17.
BMC Med Genet ; 13: 50, 2012 Jun 24.
Article in English | MEDLINE | ID: mdl-22727047

ABSTRACT

BACKGROUND: The neuronal ceroid lipofuscinoses (NCLs, or Batten disease) comprise the most common Mendelian form of childhood-onset neurodegeneration, but the functions of the known underlying gene products remain poorly understood. The clinical heterogeneity of these disorders may shed light on genetic interactors that modify disease onset and progression. CASE PRESENTATION: We describe a proband with congenital hypotonia and an atypical form of infantile-onset, biopsy-proven NCL. Pathologic and molecular work-up of this patient identified CLN5 mutations as well as a mutation-previously described as incompletely penetrant or a variant of unknown significance-in POLG1, a nuclear gene essential for maintenance of mitochondrial DNA (mtDNA) copy number. The congenital presentation of this patient is far earlier than that described for either CLN5 patients or affected carriers of the POLG1 variant (c.1550 G > T, p.Gly517Val). Assessment of relative mtDNA copy number and mitochondrial membrane potential in the proband and control subjects suggested a pathogenic effect of the POLG1 change as well as a possible functional interaction with CLN5 mutations. CONCLUSIONS: These findings suggest that an incompletely penetrant variant in POLG1 may modify the clinical phenotype in a case of CLN5 and are consistent with emerging evidence of interactions between NCL-related genes and mitochondrial physiology.


Subject(s)
DNA-Directed DNA Polymerase/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Comparative Genomic Hybridization , DNA Polymerase gamma , DNA, Mitochondrial/metabolism , Heterozygote , Humans , Infant, Newborn , Lysosomal Membrane Proteins , Magnetic Resonance Imaging , Membrane Potential, Mitochondrial , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Oxidative Phosphorylation , Phenotype , Sequence Analysis, DNA
18.
Amyotroph Lateral Scler ; 13(2): 217-22, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22292843

ABSTRACT

SOD1, ANG, TARDBP and FUS mutations have been associated with amyotrophic lateral sclerosis (ALS). Our goal was to extend molecular genetic analysis to newly identified ALS genetic loci and to determine the frequency of mutations, distribution of disease genes, and variant spectrum of these genes in a large United States ALS-phenotype cohort. We screened 1220 probands with an ALS phenotype, referred originally for SOD1 molecular genetic analysis. 1128 SOD1-negative probands were screened for ANG, and 277 and 223 SOD1- and ANG-negative samples were screened for TARDBP and FUS, respectively. One hundred additional probands were specifically screened only for FUS exon 15. We identified a total of 36 different SOD1 mutations, including three novel mutations, in 92 probands. ANG screening identified three mutations, including two novel mutations, and TARDBP screening identified two previously reported TARDBP mutations. We also identified four mutations in FUS, including the reported FUS in-frame deletion, c.430_447del, p.Gly144_Tyr149del, in a patient with inclusion body myositis, and two known FUS missense mutations. From this study, we estimate frequencies for SOD1, ANG, TARDBP and FUS mutations, in this United States cohort, to be 7.5%, 0.71%, 0.72% and 1.9%, respectively. In conclusion, we identify novel variants in SOD1, ANG, TARDBP and FUS, and expand the FUS-associated clinicopathologic phenotype.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Clinical Laboratory Techniques , DNA-Binding Proteins/genetics , RNA-Binding Protein FUS/genetics , Ribonuclease, Pancreatic/genetics , Superoxide Dismutase/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Genetic Predisposition to Disease , Genetic Testing , Humans , Mutation , Phenotype , Superoxide Dismutase-1 , United States
19.
PLoS One ; 7(1): e29729, 2012.
Article in English | MEDLINE | ID: mdl-22235333

ABSTRACT

BACKGROUND: The Neuronal Ceroid Lipofuscinoses (NCL) comprise at least nine progressive neurodegenerative genetic disorders. Kufs disease, an adult-onset form of NCL may be recessively or dominantly inherited. Our study aimed to identify genetic mutations associated with autosomal dominant Kufs disease (ADKD). METHODOLOGY AND PRINCIPAL FINDINGS: We have studied the family first reported with this phenotype in the 1970s, the Parry family. The proband had progressive psychiatric manifestations, seizures and cognitive decline starting in her mid 20 s. Similarly affected relatives were observed in seven generations. Several of the affected individuals had post-mortem neuropathological brain study confirmatory for NCL disease. We conducted whole exome sequencing of three affected family members and identified a pLeu116del mutation in the gene DNAJC5, which segregated with the disease phenotype. An additional eight unrelated affected individuals with documented autosomal dominant or sporadic inheritance were studied. All had diagnostic confirmation with neuropathological studies of brain tissue. Among them we identified an additional individual with a p.Leu115Arg mutation in DNAJC5. In addition, a pAsn477Ser change in the neighboring gene PRPF6, a gene previously found to be associated with retinitis pigmentosa, segregated with the ADKD phenotype. Interestingly, two individuals of the Parry family did report visual impairment. CONCLUSIONS: Our study confirmed the recently reported association of DNAJC5 mutations with ADKD in two out of nine well-defined families. Sequence changes in PRPF6 have not been identified in other unrelated cases. The association of vision impairment with the expected PRPF6 dysfunction remains possible but would need further clinical studies in order to confirm the co-segregation of the visual impairment with this sequence change.


Subject(s)
Genes, Dominant/genetics , HSP40 Heat-Shock Proteins/genetics , Membrane Proteins/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Pedigree , Adolescent , Adult , Exome/genetics , Female , Humans , Male , Middle Aged , Sequence Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...